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We use a lattice Boltzmann method to study pattern formation in chemically reactive binary fluids in the
regime where hydrodynamic effects are important. The coupled equations solved by the method are a Cahn-
Hilliard equation, modified by the inclusion of a reactive source term, and the Navier-Stokes equations for
conservation of mass and momentum. The coupling is twofold, resulting from the advection of the order
parameter by the velocity field and the effect of fluid composition on pressure. We study the evolution of the
system following a critical quench for a linear and for a quadratic reaction source term. Comparison is made
between the high and low viscosity regimes to identify the influence of hydrodynamic flows. In both cases
hydrodynamics is found to influence the pathways available for domain growth and the eventual steady states.
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I. INTRODUCTION

The process of phase separation in chemically reactive
mixtures has been considered by several authors. Glotzer et
al. �1� and Christensen et al. �2� used a modification of the
Cahn-Hilliard equation to investigate the effects of a linear
reaction of the type A↔B occurring simultaneously with
phase separation following an instantaneous quench. In con-
trast to phase separation alone, domain coarsening was
halted at a length-scale dependent on system parameters re-
sulting in the “freezing in” of a spatially heterogeneous pat-
tern. It was recognized that the steady states resulted from
competition between the demixing effects of phase separa-
tion and the equivalence of the chemical reaction term to an
effective long-range repulsion �2,3�. Similar physics is seen
in the phase ordering of block copolymers where an effective
long-range interaction arises because of an interplay between
interactions and steric constraints �4,5�. In such systems pat-
tern formation is a result of thermodynamic equilibrium. By
contrast, in the systems we consider, the steady states are
maintained dynamically by the interplay of reaction and dif-
fusion.

A number of chemically and structurally more compli-
cated systems have been considered, numerically and theo-
retically, within the same framework of a modified Cahn-
Hilliard equation. These include ternary mixtures �6–9� and
systems with orientational order �10�.

Here we investigate the effect of hydrodynamic interac-
tions on phase ordering in a binary fluid mixture with chemi-
cal reactions using a lattice Boltzmann method. The case of
the linear reaction has been considered before by Hou et al.
�11� by a different numerical method. We duplicate some of
their results as a means of testing our approach and then
consider the quadratic reaction mechanism A+B↔2B.

The inclusion of hydrodynamics is known to strongly af-
fect the way in which an unreactive fluid mixture coarsens in
the aftermath of a quench �12,13�. The growth exponent is
found to increase from �=1/3, for the purely diffusive case,
to �=1 or �=2/3 for the viscous and inertial hydrodynamic
regimes, respectively. The pathway for growth provided by
hydrodynamics is the transport of the bulk fluid down a pres-
sure gradient established by variations in curvature �13�. In

two dimensions this minimizes curvature by making domains
circular, where the effect vanishes and further coarsening can
only occur by diffusion �14�. In addition there is the possi-
bility, investigated by Tanaka �15�, that the rapid decrease in
interfacial area resulting from the hydrodynamic mechanism
may leave the bulk phases unequilibrated and subject to a
round of secondary phase separations. This suggests that
coupling a modified Cahn-Hilliard equation to the Navier-
Stokes equations for fluid flow may uncover behavior differ-
ent to that observed for the purely diffusive case.

Experimental work �16–18� has shown that a variety of
mesoscopic structures can be formed when chemical reac-
tions are photoinduced in phase separating polymer mix-
tures. The effects of two kinds of photochemistry have been
considered: intermolecular photodimerizations �16,18� and
intramolecular photoisomerization �17,18�. Both give rise to
a long-range inhibition which prevents phase separation pro-
ceeding beyond a certain domain size. In the first case the
inhibition is due to the formation of a network of cross-
linked polymer molecules whereas in the second case it
arises from the differing chemical properties of the two iso-
mers. The similarities in the patterns formed due to phase
separation arrest in simple fluids and in reactive polymer
blends suggest the latter may be approached by considering
first a small-molecule system.

The paper is organized as follows. In Sec. II we present a
model of a chemically reactive binary fluid which couples
the processes of reaction and diffusion to flow. We then out-
line the linear theory of pattern formation in the absence of
hydrodynamic effects. In Sec. III we construct a lattice Bolt-
zmann scheme which solves the equations of motion of Sec.
II in the continuum limit. In Secs. IV and V results are pre-
sented for the evolution of both high and low viscosity sys-
tems after a critical quench for a linear and a quadratic reac-
tion mechanism, respectively. For the reaction of type A↔B,
comparison is made with the results of Refs. �1,2,11�.

II. THE MODEL

A. Equations of motion

In this section we summarize a model which describes the
phase behavior and hydrodynamics of a two-component

PHYSICAL REVIEW E 73, 066124 �2006�

1539-3755/2006/73�6�/066124�7� ©2006 The American Physical Society066124-1

http://dx.doi.org/10.1103/PhysRevE.73.066124


fluid. Labeling the components A and B, we choose a de-
scription of the fluid in terms of the following variables: the
total density, �=�A+�B; the total momentum, �u, and a com-
positional order parameter, �=�A−�B.

The composition of the fluid evolves according to a modi-
fied version of the Cahn-Hilliard equation which includes the
effects of chemical reaction; advection of the order param-
eter by the flow field, u, and diffusion in response to gradi-
ents in chemical potential

�t��x,t� + ���u� = M0��
2��x,t� + J�x,t� . �1�

Here M0 is a mobility constant and J, which depends on the
reaction rate constants, is the change in � per unit time due
to chemical reactions. The chemical potential of the system,
�, is given by the functional derivative of the free energy, F,
with respect to �.

We choose a free energy

F����t� =� dx��

2
�2 +

�

4
�4 +

�

2
����2 + T� ln �� . �2�

� is taken to be greater than zero for stability and the sign of
� determines whether the polynomial contribution to the
free-energy density has one or two minima, and hence,
whether the fluid is above ��	0� or below ��
0� its critical
temperature. For �
0 the mixture will separate into two
bulk components separated by a narrow, but smooth, inter-
face. The gradient-squared term in � associates an energy
cost with variations in composition and the parameter � is
related to the surface tension and governs the width of the
interface between the two phases. The parameter T appears
in the isotropic part of the pressure tensor and is related to
the degree of incompressibility of the fluid �19�. A suitable
choice is T=1/3.

We consider two types of reactive source term, J. A linear
source

J��� = ���2 − �1� − ���1 + �2� , �3�

corresponding to the reversible chemical reaction A↔B.
And a quadratic source

J��� =
1

2
��1 + �2��� − ���� −

��2 − �1��
�1 + �2

	 , �4�

corresponding to the reversible chemical reaction
A+B↔2B. The constants �1 and �2 are the rates of the
forward and backward reactions, respectively. We note that,
for a spatially homogeneous system, the linear mechanism
has a single stable fixed point whereas the quadratic mecha-
nism has a stable fixed point at �= ��2−�1�� / ��1+�2� and
an unstable one at �=�. Here we consider only cases where
�1=�2=�.

The velocity field obeys a Navier-Stokes equation

�t�u� + ���u�u� = − ��P�� + ��S��, �5�

where P�� is the pressure tensor,  is the viscosity, and S�� is
the viscous stress tensor. The pressure tensor is derived from
the free energy

��P�� = �����F
��

� + �����F
��

� . �6�

This provides a further coupling between the evolution of �
and u in addition to the advection term in Eq. �1�. From Eqs.
�6� and �2� it follows that:

P�� = �T� + ���f0 − f0 − ���2� −
�

2
����2	���

+ ������� , �7�

where f0=��2 /2+��4 /4 denotes the polynomial contribu-
tion to the free-energy density.

The total mass density of the fluid � is also conserved and
obeys

�t� + ���u� = 0. �8�

B. Stability and steady-states without hydrodynamics

Linear stability analysis of the reaction-diffusion equation
�1� with u=0 and source term �3� shows that only those
modes, ��k�, with kl
 
k

ku are unstable, where ku and kl

depend on the parameters �, �, and M0 in Eq. �1� �1,2�. This
is in contrast to spinodal decomposition �the case J=0�
where only short-wavelength modes are stable. The damping
of long-wavelength modes in the reactive case prevents con-
tinued growth of domains. Instead, phase separation is halted
at some length scale set by the reaction. In addition, there is
a threshold value of �

�th = M0�2/8� , �9�

above which the reaction is strong enough to completely
inhibit phase separation by rendering all linear modes stable.

We also note, following Refs. �2,3�, that there is an
equivalence between this behavior and phase ordering in a
system with competing short and long-range interactions.

FIG. 1. �Color online� The 15-velocity face-centered-cubic lat-
tice. The dots represent lattice sites and arrows the velocity vectors
used in the lattice Boltzmann scheme. The lattice spacing, �x, and
time step, �t, are set to unity.
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The equivalence can be demonstrated by incorporating the
reactive source into an effective free energy for the system
where it appears as a nonlocal term. Formally, we rewrite Eq.
�1� as

�t��x,t� + ���u� = M0��
2� �

��
�F − H�	 , �10�

where

H =
�

M0
� dxdy��x,t�G�x,y���y,t� , �11�

and G�x ,y� is the Green’s function of the Laplace operator.
The reaction is then seen to act as an effective long-range,
intraspecies repulsion, with strength governed by �, in con-
trast to the short-range attraction of like-molecules which
drives phase separation.

For the case of equal forward and backward rates, the
linearized behavior of the quadratic source �4� with reaction
rate � is the same as for the linear source with reaction rate

�� /2. This can be seen from the linearization of Eq. �1� with
u=0 and source term �4�. Hence, at early times, the linear
and quadratic cases segregate in the same way. However,
after the formation of separate A-rich and B-rich regions,
nonlinear contributions to the source term become important
and this is expected to lead to growth of the A-rich phases at
the expense of the B-rich ones. This follows from the asym-
metry of J between the two phases: in the A-rich phase the
production of B is limited by the amount of B already
present. Hence, it is limited by the minority component of
the fluid in these regions. In the B-rich regions the produc-
tion of A is limited by the amount of the majority phase
present. Therefore, production of A in the B-rich phase is the
more rapid process.

III. A LATTICE BOLTZMANN SCHEME

The lattice Boltzmann method is a well-established nu-
merical technique for hydrodynamic problems �20�. Initially
it was a kinetic-theory based method for the simulation of
isothermal ideal flows which was introduced to circumvent
some of the problems which rendered its predecessor, lattice-
gas cellular automata, impractical. However, it has since
been modified and applied to a variety of problems in the
simulation of complex fluids. Examples include binary fluids
�21–23�, liquid-gas systems �22,24,25�, liquid-crystals �27�,
and colloidal suspensions �28�. A lattice Boltzmann scheme
for the simulation of two or more species undergoing reac-
tion and diffusion in a moving, viscous solvent was formu-
lated by Dawson et al. �26�. In comparision, our model in-
corporates the thermodynamics of the multicomponent fluid
via the Cahn-Hilliard equation.

To simulate the binary fluid model described in Sec. II we
utilize the free-energy lattice Boltzmann method of Swift et
al. �22�. To this end we define two populations of dynamical
variables �f i�x��i=0

n and �gi�x��i=0
n on the sites of a simple

lattice in three dimensions. On each site the variables f i and
gi correspond to a velocity direction ei for i=0,1 , . . . ,n. The
dynamical variables are referred to as distribution functions
since their moments over the velocity set define the macro-
scopic physical quantities

� = 
i=0

n

f i�x,t�, �u = 
i=0

n

ei f i�x,t�, � = 
i=0

n

gi�x,t� .

�12�

FIG. 2. Steady, or near-steady, states for a linear reaction mecha-
nism in the diffusive �� f =400, left-hand column� and hydrodynamic
�� f =5.0, right-hand column� regimes for two different values of �:
�=0.001, top, and �=0.0001, bottom. A-rich regions are shown in
white and B-rich ones in black.

FIG. 3. Log-log plot of the av-
erage domain size, measured by
the inverse interfacial length, as a
function of time at �a� high and
�b� low viscosity. The reaction
rates are �=0.001 ���; 0.0001
��� and 10−5 ���, respectively.
The solid straight line corresponds
to �=1/3 in �a� and �=2/3 in �b�.
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The distribution functions on each site are updated in dis-
crete time with a time step �t. The velocities are chosen so
that e0=0 and, for all i�0, ei�t lies between two lattice sites.
The choice of lattice and velocity set are subject to certain
restrictions �20�. For this work we used a face-centered-cubic
lattice in three dimensions with the set of 15 velocities,
i=0,1 , . . . ,14, illustrated in Fig. 1.

The distribution functions f i and gi evolve according to

f i�x + �tei;t + �t� = f i�x;t� + �i
�f�f� , �13�

gi�x + �tei;t + �t� = gi�x;t� + �i
�g�g� + Fi, �14�

where

�i
��f� = −

�t

�
�f i�x;t� − f i

eq�x;t�� , �15�

and the relaxation times � f and �g are free parameters. Equa-
tions �13� and �14� are both lattice equivalents of the

Bhatnager-Gross-Krook �BGK�, or single relaxation time,
approximation to the full continuum Boltzmann equation
�20�.

We now need to specify the local equilibria functions f i
eq

and gi
eq and the forcing term Fi. f i

eq and gi
eq are taken to be

series expansions in the velocity

f i
eq = Ai + Biei�u� + Ciu

2 + Diei�ei�u�u� + Ei
��ei�ei�,

�16�

gi
eq = Hi + Jiei�u� + Kiu

2 + Qiei�ei�u�u�. �17�

The coefficients in Eqs. �16� and �17� are chosen so the mo-
ments of the equilibrium distributions satisfy


i=0

n

f i
eq = �, 

i=0

n

f i
eqei� = �u�, �18�


i=0

n

f i
eqei�ei� = P�� + �u�u�, �19�


i=0

n

gi
eq = �, 

i=0

n

gi
eqei� = �u�, �20�


i=0

n

gi
eqei�ei� = D���� + �u�u�. �21�

In addition, the lattice forcing term is chosen to obey


i=0

n

Fi = �tJ���, 
i=0

n

ei�Fi = 0. �22�

One possible choice of the coefficients, such that con-
straints �18�–�22� hold, is given by

A1–14 = 1
30 P��, A0 = � − 14A1, �23�

B7–14 = �/24, B1–6 = 8B7, �24�

C7–14 = − �/24, C0 = 16C7, C1–6 = 2C2, �25�

D7–14 = �/16, D1 = 8D2, �26�

E7–14
�� = 1

16�P�� − 1
3���P��� , �27�

E1–6
�� = 8E7

��, �28�

H1–14 = 1
10D�, H0 = � − 14H1, �29�

J7–14 = �/24, J1–6 = 8J7, �30�

K7–14 = − �/24, K0 = 16K7, K1–6 = 2K7, �31�

Q7–14 = �/16, Q1–6 = 8Q7 �32�

F0 = �t 1
2J, F1–6 = �t 1

24J, F7–14 = �t 1
32J . �33�

FIG. 4. Time evolution of the domain structure for a quadratic
reaction mechanism with rate �=0.0001 for high viscosity �� f

=400, left-hand column� and low viscosity �� f =5.0, right-hand col-
umn� at times t=10 000 �top�, t=20 000 �middle�, and t=200 000
�bottom�. The A-rich regions are shown in white and the B-rich
regions in black.
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The constraints �18�–�22� ensure that, on length and time
scales large compared to the lattice spacing and time step,
the evolution of the moments �12� satisfies the partial differ-
ential equations set out in Sec. II A. To check that this is
indeed the case the task of reducing the description of the
dynamics in terms the distribution functions to one in terms
of their moments must be addressed. The reduction can be
performed by a Chapman-Enzkog expansion of Eqs. �13� and
�14�. Since the details of this are essentially no different to
those found in Ref. �22� we present only the result here.

The zeroth moment of the f i satisfies Eq. �8� for conser-
vation of mass. The first moment of the f i satisfies the
Navier-Stokes equation �5� with = 1

3 �� f −1/2��t and

S�� = ����u� + ��u�� + E��,u� , �34�

where the E denotes unwanted error terms �22�.

The first moment of the gi satisfies the reaction-diffusion-
advection equation

�t� + ���u� = �g�D��
2� − ����

�
��P���	

+ �g���u�J� + J��� , �35�

where �g=�t��g−1/2� and D is defined in Eq. �21�. Equation
�35� corresponds to Eq. �1� with mobility M0=�gD but with
two extra terms. The term in gradients of the components of
the pressure tensor is present in some other free-energy lat-
tice Boltzmann methods and has been shown numerically to
be small in comparison to the desired terms �22�. The term in
gradients of the reactive source can be seen, to first order in
�, to be a correction to the advecting velocity of order �g�.
For our choices of parameters, this contribution is small in
the low viscosity regime where the advecting flow field is
important.

This completes the specification of our lattice Boltzmann
method. Although the model is inherently three dimensional,
we consider only its restriction to two dimensions. As an
initial condition we choose the total density of the fluid
�=1 at each lattice lattice. The near incompressibility of the
fluid ensures that this value remains approximately the same
at later times. To imitate the conditions following a rapid
cooling of a fluid from above to below its critical tempera-
ture we initialize ��x ;0�=���x� where �� is random noise
with 
���x�
�0.01 "x. The parameters � and � in the free
energy are chosen so that in the unreactive case the fluid
phase separates into regions where �= ±1.0. We choose
�=0.01 to ensure a narrow interface and choose �g=1.0 and
D=2.0 which fixes the diffusion constant M0=1.0. We also
choose �t=�x=1.0 and the system size Lx=Ly =256,
throughout. The viscosity of the fluid is controlled by vary-
ing the relaxation time � f. For � f =400, domains in the unre-
active fluid grow as t1/3 and the fluid can be taken to be in the
diffusive regime where hydrodynamic flows are negligible.
To ensure a hydrodynamic growth exponent of 2 /3 we
choose � f =5.0.

IV. LINEAR REACTION

We consider first the case of the linear reaction mecha-
nism �3�. Figure 2 compares the steady-state structures at
low and high viscosities for two different values of the rate
constant �.

At high viscosity �Fig. 2, left-hand column� hydrody-
namic effects are suppressed and domain evolution is due
entirely to the interplay between reaction and diffusion. We
observe the laminar steady-state morphologies found in Refs.
�1,2�. The average domain size in the steady state is depen-
dent on the rate of reaction: decreasing � weakens the oppo-
sition to phase separation posed by the reaction. Hence, for
smaller �, the average domain size in the steady state is
larger.

A measure of the characteristic length scale is given by
the inverse interfacial length lI=LxLy /LI, where LI is defined
as the number of lattice sites x such that ��x���x��
0 for at
least one x� a nearest neighbor of x. Figure 3�a� shows the

FIG. 5. Time evolution of the domain structure for a quadratic
reaction mechanism with rate �=0.001 for high viscosity �� f =400,
left-hand column� and low viscosity �� f =5.0, right-hand column� at
times t=10 000 �top�, t=40 000 �middle�, and t=200 000 �bottom�.
The A-rich regions are shown in white and the B-rich regions in
black.
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time evolution of lI at high viscosity for different values of �.
For low rate constants, lI is close to the spinodal growth law,
�=1/3, at early times before asymptoting to a constant
value. For a faster reaction, a steady length scale is quickly
selected without prior scaling. These results are in qualitative
agreement with those of Refs. �2,11�.

At low viscosities hydrodynamics becomes important and
pressure driven flows attempt to eliminate local interfacial
curvature. The effect on phase separation in an unreactive
fluid is to increase the rate of domain growth. However, the
mechanism is such that for a complicated domain structure,
conflicting signals will be sent into the bulk phase as to the
direction in which flow should be established �13�. As a re-
sult, a complicated flow-field arises.

For �=0.001 a labyrinthine pattern of A-rich and B-rich
domains, similar to that observed at high viscosity, is formed
�compare the top two panels in Fig. 2�. However, the regions
of highest interfacial curvature at high viscosity �Fig. 2, top
left�, where two misaligned domains meet, can no longer be
maintained in the presence of flow. Instead the domains
curve gently and form concentric arrays of arcs, sometimes
enclosing spiral-like structures �11�.

For �=0.0001, the additional mixing effects of pressure
driven flows lead to a greater degree of coarsening before the
energetic barrier presented by the reaction is reached than in
the purely diffusive case �compare the bottom two panels in
Fig. 2�. Hence, the domains at low viscosity are larger and
more circular compared to the narrow, elongated domains
found at high viscosity. At later times there is a period of
domain creation with smaller domains forming inside exist-
ing ones. This is analogous to the “interface-induced second-
ary quench” described by Tanaka �15�. Rapid hydrodynamic
growth has resulted in a state where the processes of reaction
and diffusion have not yet brought about bulk phases with
equilibrium values of �. Consequently, inhomogeneities in
the bulk may grow, triggering the formation of new domains
within an existing one. Figure 3�b� shows the evolution of
the inverse interfacial length at low viscosity for three differ-
ent reaction rates. For �=10−4 and �=10−5, the introduction
of the new interface is clearly seen as a peak in lI. At late
times a balance is eventually struck between the flow, diffu-
sion, and the reactive repulsion. The result is the hierarchy of
roughly circular interfaces separated by narrow channels
shown in Fig. 2 �bottom right�.

V. QUADRATIC REACTION

For the case of the quadratic source term �4�, the steady
state is an array of B-rich domains in an A-rich matrix where,

in both phases, the order parameter does not take a thermo-
dynamic equilibrium value. The shape of the steady-state
domains, their density and the evolution to the steady state
depend on the viscosity and the rate of reaction. The left-
hand column of Fig. 4 shows the evolution of the domain
structure at high viscosity for �=0.0001. At early times there
is a period of domain growth. However, due to the asymme-
try of the reaction mechanism, the growth of the B-rich do-
mains is halted at a certain size after which the B-rich do-
mains are depleted by the reaction with smaller domains
vanishing completely. As this process occurs some of the
larger domains break up to reduce the surface tension. This
creates small, circular domains which either vanish or as-
sume a steady size. At some point a balance is reached be-
tween the depletion of the B-rich domains and their growth
due to B, produced in the surrounding A-rich fluid, being
supplied by diffusion.

If the viscosity is decreased the initial rate of growth is
higher as shown in the right-hand column of Fig. 4. As at
high viscosity the growth of B-rich domains is eventually
reversed by the reaction. However, as the B-rich domains are
depleted hydrodynamic flows continue to drive coalescence
of nearby domains faster than is possible by diffusion alone.
Consequently, at intermediate times, there are fewer domains
and they are less elongated than at high viscosity. At later
times, gradients of � within the A-matrix trigger several sec-
ondary phase separations, increasing the density of domains
at the latest times simulated. By t�200 000 an approxi-
mately steady state has been reached.

For a faster rate of reaction, �=0.001, “wormlike” phases
are able to persist until the latest time simulated as shown in
the left-hand column of Fig. 5. This indicates a transition to
a reaction-dominated regime where structures with high cur-
vature, which are unfavored by flow and diffusion, can per-
sist for a long time.

If the viscosity is decreased, as shown on the right of Fig.
5, the structures formed are similar to those at high viscosity.
However, secondary phase separations are triggered within
the A-rich phase increasing the number of small domains.

Figure 6 shows the evolution of the inverse interfacial
length for different values of � and . It can be seen that
when hydrodynamic effects are present the rate of reduction
of interfacial length is faster. Moreover, lI is no longer mono-
tonically increasing: it attains a maximum due to the creation
of more interface during secondary phase separation events.

FIG. 6. Log-log plot of the av-
erage domain size measured by
the inverse interfacial length for
�a� �=0.001 and �b� �=0.0001
and values of � f =400 �high vis-
cosity, �� and � f =5.0 �low viscos-
ity, ��. The solid straight lines
correspond to �=1/3 and �=2/3.
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VI. CONCLUSIONS

In conclusion, we have extended the lattice Boltzmann
method to study the effect of hydrodynamics on structures
arising in phase-separating reactive mixtures for two simple
reaction mechanisms. We have found that hydrodynamic
flow significantly alters both the way in which the domain
structure in these fluids evolves and the eventual steady
states of the system. The results obtained for the linear reac-
tion are in agreement with previous work on the subject. For
a quadratic reaction an asymmetric domain structure was ob-
tained, with the inclusion of hydrodynamic effects leading to
secondary phase separation within majority phase.

It would be interesting to extend the model to incorporate
viscoelastic effects arising from constituent molecules with
internal microstructure: one can envisage chemical processes
which can change the local microstructural elements. The
technique also makes feasible a study of the interaction of
reaction and diffusion with imposed flow fields.
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